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Abstract

A two-dimensional numerical simulation is conducted to analyze the steady laminar natural convective flow and heat transfer of micropolar
fluids in a square enclosure. The vertical walls are kept at isothermal conditions, while horizontal walls are assumed to be insulated. Employing
the finite difference method, computations are carried out to investigate the material parameter of the micropolar fluid, the Rayleigh and Prandtl
numbers, both for weak and strong concentration cases. It was shown that micropolar fluids give lower heat transfer values than those of the
Newtonian fluids. An increase of the material parameter, K is shown to decrease the heat transfer. The results for K = 0, which corresponds to
the Newtonian fluid case are compared with those available in the existing literature, and an excellent agreement was obtained.
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1. Introduction

During recent years, the theory of micropolar fluids has re-
ceived much attention and this is because the traditional New-
tonian fluids cannot precisely describe the characteristics of
the fluid flow with suspended particles. Studies on micropo-
lar fluids have recently received considerable attention due to
their application in a number of processes that occur in indus-
try. Such applications include the extrusion of polymer fluids
and real fluids with suspensions, solidification of liquid crys-
tals, cooling of a metallic plate in a bath, animal bloods, porous
media, turbulent shear flows, flow in capillaries and microchan-
nels, and colloidal and suspension solutions, for example, for
which the classical Navier-Stokes theory is inadequate. The
concept of such fluids is to provide a mathematical model for
the behavior of fluids taking into account the initial characteris-
tics of the substructure particles which are allowed to undergo
rotation. In recent years there exist several new developments in
fluid mechanics that are concerned with structures within fluid,
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fluids which the classical theory has proved to be inadequate
to describe their behavior. The simplest theory considered for
structured fluids, the theory for micropolar fluids has been in-
troduced by Eringen [1,2]. This theory contains six viscosity
coefficients for compressible fluids and five for incompressible
ones and there are two kinematics vector fields: the usual veloc-
ity field and an axial vector that represents the spin or the micro-
rotation of the micropolar fluid particles which are assumed to
be rigid, see Faltas and Saad [3]. Owing to its relatively math-
ematical simplicity, the micropolar fluids model has been also
widely used in lubrication to investigate the polymer solutions
in which the Newtonian lubricant is blended with small amount
of long-chained additives.

The essence of the theory of micropolar fluid flow lies in the
extension of the constitutive equations for Newtonian fluids so
that more complex fluids can be described by this theory. In this
theory, rigid particles contained in a small fluid volume element
are limited to rotation about the center of the volume element
described by the micro-rotation vector. This local rotation of the
particles is in addition to the usual rigid body motion of the en-
tire volume element. In the micropolar fluid theory, the laws of
classical continuum mechanics are augmented with additional
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Nomenclature

acceleration due to gravity................ ms~
microinertiadensity ............. ... ... m
non-dimensional material parameter

length of the square cavity ................... m
constant

angular velocity .................o L s
local Nusselt number

average Nusselt number

Prandtl number

Rayleigh number
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[¢]

»

T fluid temperature .. ............. ... K
T, temperature of the cold wall .................. K
Ty temperature of the hotwall................... K
Ty characteristic temperature .. .................. K
u,v velocity components along x and y axes,
respectively ... ms

X,y Cartesian coordinates in the horizontal and

vertical directions, respectively ............... m
Greek letters
o thermal diffusivity ...................... m?s~!
B thermal expansion coefficient .............. K™!
y spin gradient viscosity................. kgms™!
K VOIteX VISCOSIY .. vvvvvvvnnennnennnn kgm~!s~!
0 dimensionless temperature
" dynamic viscosity .................. kgm~!s~!
v kinematic viscosity ................ouun. m? s~
P fluiddensity ...t kgm™3
1) vorticity function ............. ... ... ... s~!
v non-dimensional stream function
Subscripts
mid midplane of the cavity
max maximum value
min minimum value

equations that account for the conservation of micro-inertia mo-
ments and the balance of first stress moments that arise due
to consideration of the microstructure in a material, and also
additional local constitutive parameters are introduced. Physi-
cally micropolar fluids may be described as the non-Newtonian
fluids consisting of dumb-bell molecules or short rigid cylindri-
cal elements, polymer fluids, fluid suspensions, animal blood,
etc. The presence of dust or smoke, particularly in a gas, may
also be modeled using micropolar fluid dynamics. The key
points to note in the development of Eringen’s microcontin-
uum mechanics are the introduction of new kinematic variables,
e.g. the gyration tensor and microinertia moment tensor, and
the addition of the concept of body moments, stress moments,
and microstress averages to the classical continuum mechanics.
However, a serious difficulty is encountered when this theory
is applied to real, non-trivial flow problems; even for the lin-
ear theory, a problem dealing with simple microfluids must be
formulated in terms of a system of nineteen partial differential
equations in nineteen unknowns and the underlying mathemat-
ical problem is not easily amenable to solution. These special
features for micropolar fluids were discussed in a comprehen-
sive review paper of the subject and application of micropolar
fluid mechanics by Ariman et al. [4]. Early studies along these
lines may be found in the review article by Peddieson and
McNitt [5], and in the recent books by Lukaszewicz [6] and
Eringen [7]. However, to our best knowledge, the general con-
stitutive theories governing the behavior of micropolar fluids
have not been described experimentally yet. An experimental
work is required to provide a means for determining the value
of the parameters that describe such fluids. How does one exper-
imentally determine the microrotation? How does one go about
prescribing boundary conditions for microrotation? What is the
experimental evidence for the specification of such a condi-
tion? Regarding specific liquid crystals there are many models

which describe the constitutive theories of these liquids, such
as those due to Leslie and Ericksen, De Gennes, and others
(see Ariman et al. [4]). Even for such models there are dif-
ficulties with regard to prescribing boundary conditions. For
instance, in the case of director theories one has the onerous
task of specifying boundary conditions for directors. This is
a kind of continuum mechanics, and many classical flows are
being re-examined to determine the effects of fluid microstruc-
ture (Willson [8], Bergholz [9], etc.). However, Hoyt and Fab-
ula [10] have shown experimentally that the fluids containing
minute polymeric additives indicate considerable reduction of
the skin friction (about 25-30%), a concept which can be well
explained by the theory of micropolar fluids. Power [11] has
shown that the fluid flowing in brain (CSF) is adequately mod-
eled by micropolar fluids.

In many engineering applications and naturally occurring
processes, natural convection plays an important role as a dom-
inating mechanism. Besides its importance in such processes,
due to the coupling of fluid flow and energy transport, the phe-
nomenon of natural convection remains an interesting field of
investigation. This fact is reflected by numerous studies in the
existing literature dedicated to this topic during the past few
decades. Some excellent comprehensive review articles on this
subject are given by Ostrach [12], Yang [13], and Fusegi and
Hyun [14].

Most of the previous studies on natural convection in enclo-
sures have been related to Newtonian fluids. Despite the impor-
tance of the micropolar fluids mentioned above, there are only
a few of research efforts on natural convection of these fluids
in enclosures. Hsu and Chen [15] numerically investigated the
Rayleigh—Benard convection of a micropolar fluid in an enclo-
sure using the cubic spline collocation method. They performed
parametric studies on the effects of microstructure of heat and
fluid flow. It was found that the heat transfer rate of micropo-
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lar fluids was smaller than that of the Newtonian fluid. Natural
convection of micropolar fluids in a completely partitioned en-
closure heated from below was investigated by Hsu and Tsai
[16]. In another work, Hsu et al. [17] studied natural convec-
tion of micropolar fluids in a tilting enclosure equipped with a
single or multiple uniform heat sources. In a recent study, Ay-
din and Pop [18] numerically investigated the steady laminar
natural convective flow and heat transfer of micropolar fluids in
enclosures with a centrally located discrete heater in one of its
sidewalls by applying a finite difference method.

As an extension of our previous study mentioned above [18],
the aim of the present study is focused on analyzing the steady
natural convective heat transfer of micropolar fluids in a square
cavity with differentially heated vertical walls and adiabatic
horizontal walls using an elegant theory of micropolar fluids.
The effects of main governing parameters such as the Rayleigh
number, Prandtl number and material parameter are studied and
also compared with those for Newtonian fluids. A very good
agreement has been found. To our best knowledge the present
problem has not been studied previously.

2. Analysis
2.1. Mathematical formulation

Consider the natural convection flow in a square cavity of
length L filled with a micropolar fluid, as shown in Fig. 1,
where the coordinates x and y are chosen such that x measures
the distance along the bottom horizontal wall, while y measures
the distance along the left vertical wall, respectively. It is as-
sumed that the horizontal walls are adiabatic, while the left and
right vertical walls are kept at the constant temperatures 7, and
T., respectively, where Tj, > T,. Under these assumptions, the
basic unsteady equations of motion and energy are
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where u and v are the velocity components along x and y
axes, T is the fluid temperature, N is the component of the
microrotation vector normal to the x — y plane, 7 is the time,
g is the magnitude of the acceleration due to gravity, p is the
density, u is the dynamic viscosity, « is the vortex viscosity,
y is the spin-gradient viscosity, j is the microinertia density,
To = (Ty, + T.)/2 is the characteristic temperature and n is a
constant 0 < n < 1. It should be mentioned that the case n =0,
called strong concentration of microelements (see Guram and
Smith [19]), indicates N = 0 near the walls. It represents con-
centrated particle flows in which the microelements close to
the wall surface are unable to rotate. The case n = 1/2, on the
other hand, indicates the vanishing of anti-symmetric part of
the stress tensor and denotes weak concentration (see Jena and
Mathur [20]). The case n = 1, as suggested by Peddieson [21]
is used for the modeling of turbulent boundary layer flows. Fur-
ther, we shall assume that y has the following form as proposed
by Ahmadi [22] and used by Rees and Pop [23] for the problem
of free convection boundary layer flow over a vertical flat plate
embedded in a micropolar fluid

—(u+E)i=n(1+5), 7
V—(M‘FE)J—H( +3>J @)

where K is called the material parameter.
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We eliminate now the pressure terms from Egs. (2) and (3),
and introduce the following non-dimensional variables

x=%/L, y=53/L, t=(v/L?)i

u=(L/vyu, v=(L/v)v

0= (T —To)/(Th — Tc)

N=(L*/V)N, o= (L*/v) (8)

where v is the kinematic viscosity and  is the vorticity func-
tion. Substituting (8) into Eqgs. (1)—(5), we get
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where j = L? defines the length scale (see Rees and Bassom
[24]), Pr = v/« is the Prandtl number, Ra = gB8(T), — T.) L3 /av
is the Rayleigh number and v is the non-dimensional stream
function which is defined in the usual way as

oy oy
u=—, -
ay ax

The initial and boundary conditions (6) become

13)

t<0: u=v=0, N=0
=0 any 0<x,y<l1
0
t>0: u=v=0, N:—n—u
0x
=05 on x=0,0<y<1
u
u=v=0, N=-n—
0x
6=—-05 on x=1,0<x<1
Jdv
u=v=0, N=-n—
dy
a0
8—:0 on y=0 and y=1,0<x<1 (14
y

It is worth mentioning that for K = 0, Egs. (9), (10) and (12)
describe the classical problem of natural convection of a New-
tonian fluid in a differentially heated square cavity, first consid-
ered by Vahl Davis [25].

The quantities of physical interest in this problem are also
the local, Nu, and the average, Nu,y, Nusselt numbers at the
vertical walls, which are given by

1
a0

Nu = —<—> , Nuyy, = —fNudy (15)
dx x=0,1 0

2.2. Method of solution

The numerical solutions to the systems of coupled par-
tial differential equations (9)—(12) under the boundary con-
ditions (14) are obtained using the finite-difference method.
The vorticity transport, microrotation and energy equations are
solved using the alternating direction implicit method and the
stream function equation is solved by the successive overrelax-
ation (SOR) method. The overrelaxation parameter is chosen
to be 1.8 for stream function solutions. In order to avoid diver-
gence in the solution of the energy, microrotation and vorticity
equations, an underrelaxation parameter of 0.5 is employed.
Hybrid differencing is used with the convective terms, and cen-
tral differences are used with diffusive and buoyancy terms.
First-order-accurate forward differences are used with the time
derivative. The following criterion is employed to check for the
steady state solution:

Dolort —ofl<e (16)
i,j

where @ stands for ¥, w, N or 8; k refers to time; and i and
j refer to space coordinates. The value of ¢ is chosen as 1077,
Convergence of iterations for the stream function solution is
obtained at each time step. The time step used in the com-
putations is varied between 0.00001 and 0.004, depending on
the Rayleigh number and mesh size. All the computations are
carried out on a PC. After a grid refinement study, the major-
ity of calculations presented here were made using a 31 x 31
non-uniform and non-staggered grid structure, which was con-
structed using finer grid spacing near the walls and coarser
spacing in the interior of the cavity. The results obtained us-
ing a finer grid 61 x 61 do not reveal discernible changes in the
predicted heat transfer and flow field. More details and validity
of the numerical procedure can be found in Refs. [26,27].

3. Results and discussion

Computations are carried out for the following values of the
governing parameter both for the weak concentration (n = 0)
and for the strong concentration (n = 0.5) cases: Pr =0.01, 0.1,
0.71, 1, 10; Ra = 10, 10*, 10° and 10%; K =0, 0.1, 0.5 and 2.
Interestingly, no difference is observed between the results of
the weak and strong concentration cases. This is attributed to
the symmetrical boundary conditions for the microrotation both
in x and y directions. Therefore, we present here results only for
the case of weak concentration case (n = 0). We should notice
again that the case of K = 0 represents the Newtonian fluid.
Initially, for this case, predicted results are compared with the
benchmark solution of Vahl Davis [25] for the same geometry
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(a) Ra =103 (b) Ra =10°
Fig. 2. Streamlines for different value of the material parameter, K and
Rayleigh number, Ra when Pr=0.71 and n =0.

Table 1
Comparison of the results for K = 0 (Newtonian fluid) with those given by
Ref. [24]

Ra 10* 109
Present Ref. [24] Difference Present Ref. [24] Difference
study (%) study (%)
Ymid 5.087 5.071 0.310 16.445 16.320 0.760
Ymax 5.087 5.071 0.310 16.954  16.750  1.200
Umax 16225 16.178 0.290 65.874  64.630 1.890
Vinax 19.645  19.617 0.140 215.350 219.360 1.860
Nuay 2.234 2.243 0.400 8.945 8.800 1.620
Numax  3.531 3.528 0.080 18.254  17.925 1.800
Numin 0.589 0.586 0.510 0.975 0.989  1.440

examined here (i.e. a square cavity with differentially heated
vertical walls and adiabatic horizontal walls). This is also a
check for the validity of the computer code developed. A com-
parison between the results of the present study and the bench-
mark study for Rayleigh number values of Ra = 10* and 10°
with Pr =0.71 is shown in Table 1, where ¥mid, ¥max> Umax»
Vinax> NVav, Ntmax and Numin refer to the stream function at the
midplane of the cavity, the maximum value of the stream func-
tion, the maximum horizontal velocity on the vertical midplane,
the maximum vertical velocity on the horizontal midplane, the

.
)

(a) Ra =10°

(b) Ra =106

Fig. 3. Isotherms for different values of the material parameter, K and Rayleigh
number, Ra when Pr=0.71 and n =0.

average (mean) Nusselt number at the hot wall, the maximum
value of the local Nusselt number at the hot wall and the min-
imum value of the local Nusselt number at the hot wall, re-
spectively. As can be seen, the deviations from the benchmark
solutions are very small, which gives great confidence to the
computer code used in this paper.

In the following, the effect of the material parameter K is
studied. For each value of the Rayleigh number, the material
parameter is increased and its effect on the momentum and en-
ergy transport is shown. Figs. 2, 3 and 4 show the streamlines,
the isotherms, and the vorticity contours, respectively for the
ranges of K considered with Ra = 10% and 10°, Pr = 0.71.
As expected, increased Rayleigh number numbers result in in-
tensified circulation inside the enclosure and thinner thermal
boundary layers near the heated and cooled walls, which lead to
enhanced momentum and heat transfers, respectively. However,
for a fixed value of the Rayleigh and Prandtl numbers, it is too
difficult to see and explain the effect of the parameter K on heat
and fluid flow from the figures above since related functions
are very concentrated near the heated and cooled boundaries.
Based on the examination of these figures, one may say that, at
a fixed value of Ra and Pr, the effect of K seems to be negli-
gible. This is misleading and therefore, heat transfer results are
suggested to be analyzed. The effect of varying Ra on the aver-
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Fig. 4. Vorticity contours for different value of the material parameter, K and
Rayleigh number, Ra when Pr=0.71 and n = 0.

Table 2
The effect of K on the average Nusselt number Nu,y for different values of Ra
when Pr=0.71 and n =0

Nuay
K Ra

103 104 10% 106
0 1.118 2.234 4.486 8.945
0.5 1.057 1.947 4.033 7.984
1 1.034 1.771 3.729 7.433
2 1.016 1.545 3.314 6.673

age Nusselt number, N,y, at the heated wall is shown in Fig. 5
for some values of K and a fixed value of Pr=0.71. As seen
for a fixed value of Ra, an increase in K reduces the heat trans-
fer or average Nusselt number. In addition, the Newtonian fluid
(K =0) is found to have higher average heat transfer rates than
a micropolar fluid (K # 0). This is because an increase in the
vortex viscosity would result in an increase in the total viscos-
ity of the fluid flow, thus decreasing the heat transfer. This is in
agreement with the results reported by Kumari and Nath [28],
and Chiu and Chou [29]. The values of N,y shown in Fig. 5 are
also given in Table 2 for Pr = 0.71. Here it is also questioned
how the decreasing effect of the material parameter, K on the
heat transfer varies with the Prandtl number, Pr. Fig. 6 illus-

9 - T — T

K Pr=0.71

Fig. 5. The effect of Rayleigh number, Ra on the average Nusselt number, Nugay,
for Pr=0.71 when n =0.

2.6 - ———rrT T — T

Ra=10*
K ° .

2.4

10 10
Pr

Fig. 6. The effect of Prandtl number, Pr on the average Nusselt number, Nugy,
for the Rayleigh number Ra = 10% when n =0.

trates the effect of the Prandtl number on the heat transfer, for a
fixed value of the Rayleigh number, Ra = 10*, and for different
values of the material parameter K. As known from the exist-
ing literature (see Bejan [30]), for low-Pr fluids (Pr < 1), the
approximate expression for the averaged Nusselt number Nu,y
is given in the form of Nug, ~ (Ra Pr)!/*, while it is given by
Nugy ~ Ral’* for high-Pr fluids (Pr > 1). The results obtained
here are, therefore, consistent with these above scale analysis
results given by Bejan [30]. For each value of Pr, again, the ef-
fect of the material parameter K is found to decrease the heat
transfer. It is also seen from Fig. 6 that for given values of Pr
and Ra, the decrease of the heat transfer with the increase of
K is more significant for higher values of Ra. We also notice
that the rate of heat transfer increases with Pr. This is to be
expected, because a larger Prandtl number results in a thinner
thermal boundary layer with a corresponding large temperature
gradient at the wall, and hence a large heat transfer.
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4. Conclusions

In this study, the natural convection heat transfer of micropo-
lar fluids in a differentially heated square enclosure is computa-
tionally studied using the finite difference method. Simulations
are performed to investigate the effects of the Rayleigh num-
ber, Ra, Prandtl number, Pr and the material parameter, K on
the momentum and heat transfer for a weak concentration parti-
cles of the micropolar fluid (n = 0). As expected, it is found that
the average Nusselt number increases with increasing Rayleigh
and Prandtl numbers. On the other hand, it is disclosed that an
increase at the material parameter reduces the heat transfer.
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